Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Xiong, ${ }^{\text {a }}$ Xin-Xiang Lei ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, Zhejiang, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.046$
$w R$ factor $=0.137$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

Diaqua(benzimidazole)(nitrato- κO)(1,10-phenanthroline)cadmium(II) nitrate

In the crystal structure of the title compound, $\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$, the phenanthrolinechelated Cd atom is bonded to the benzimidazole, two water molecules and a monodentate nitrate group in a sixcoordinate octahedral geometry. The cation interacts with the nitrate anion to form a three-dimensional hydrogenbonding network.

Comment

Cadmium salts, such as cadmium carboxylates, yield adducts with 1,10-phenanthroline in which the heterocycle binds in the typical chelating mode, and a number of such complexes can be found in the Cambridge Structural Database (Version 5.26; Allen, 2002). Cadmium nitrate affords only two complexes, (nitrato- $\kappa^{2} O, O^{\prime}$)(nitrato- κO)bis(1,10-phenanthroline)cadmium (Shi et al., 2004) and di(nitrato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis $(1,10-$ phenanthroline) (Tadjarodi et al., 2001), probably because the two ligands present severe crowding around the metal atom.

(I)

The present study used a hydrothermal method to synthesize a cadmium nitrate adduct with both 1,10-phenanthroline and benzimidazole as donor ligands. Monodentate benzimidazole has been used to bind to, for example, cadmium succinate (Liu \& Xu, 2004a), cadmium phthalate (Liu \& Xu, 2004b) and the cadmium derivative of pentaazapentacycloheptacosatridecaene (Sessler et al., 1989). The synthesis yielded diaqua(benzimidazole)(nitrato- $\kappa O)(1,10$-phenanthroline)cadmium(II) nitrate, (I), in which the nitrate anion interacts indirectly with the Cd atom through the coordinated water molecules. In this mixed-ligand compound, the Cd atom in the cation exists in an octahedral environment; the donor atoms of the ligands and a water molecule comprise a square around it. The second water molecule and the O atom of the monodentate nitrate group occupy the other two positions

Received 21 April 2005
Accepted 5 May 2005
Online 14 May 2005
\qquad

Figure 1
ORTEPII plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii.
(Fig. 1). The cation and anion interact through H atoms to furnish a tightly held three-dimensional network (Table 2).

Experimental

The title compound was synthesized hydrothermally from cadmium nitrate dihydrate ($1 \mathrm{mmol}, 0.27 \mathrm{~g}$), 1,10-phenanthroline (2 mmol , 0.36 g), benzimidazole ($2 \mathrm{mmol}, 0.24 \mathrm{~g}$) and water (20 ml). The reagents were heated in a 30 ml Teflon-lined stainless steel Parr bomb at 426 K for 5 d . The bomb was slowly cooled to room temperature to yield colourless crystals that were collected and washed with water.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{NO}_{3}$
$M_{r}=570.79$
Monoclinic, $P 2_{\mathrm{a}} / n$
$a=7.5119$ (4) A
$b=16.9551$ (9) \AA
$c=17.1127$ (9) \AA
$\beta=90.821(1)^{\circ}$
$V=2179.3$ (2) \AA^{3}
$Z=4$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.336, T_{\text {max }}=0.808$
13046 measured reflections

Refinement

[^1]Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1$	$2.405(4)$	$\mathrm{Cd} 1-\mathrm{N} 1$	$2.343(4)$
$\mathrm{Cd} 1-\mathrm{O} 1 w$	$2.345(4)$	$\mathrm{Cd} 1-\mathrm{N} 2$	$2.348(4)$
$\mathrm{Cd} 1-\mathrm{O} 2 w$			$2.246(4)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 1 w$			
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2 w$	$151.9(1)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{N} 3$	$90.0(1)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	$71.7(1)$	$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{N} 1$	$90.3(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$89.9(2)$	$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{N} 2$	$158.7(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 3$	$117.2(1)$	$\mathrm{O} 2 w-\mathrm{Cd} 1-\mathrm{N} 3$	$96.1(2)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 2 w$	$92.0(2)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$71.2(1)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{N} 1$	$80.2(1)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 3$	$173.6(1)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{N} 2$	$91.2(1)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 3$	$102.6(1)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 4$	$0.848(10)$	$1.873(13)$	$2.717(5)$	$173(5)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.849(10)$	$1.975(12)$	$2.824(5)$	$179(6)$
$\mathrm{O}^{\mathrm{ii}} w-\mathrm{H} 2 w 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.843(10)$	$1.96(2)$	$2.775(5)$	$163(5)$
$\mathrm{O}_{2} w-\mathrm{H} 2 w 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.844(10)$	$1.883(15)$	$2.721(6)$	$172(7)$
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{n} \cdots \mathrm{O}^{\mathrm{iii}}$	$0.848(10)$	$2.03(3)$	$2.789(5)$	$149(5)$

Symmetry codes: (i) $1+x, y, z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$.
The aromatic H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values tied to the $U_{\text {eq }}$ of the parent atoms by a factor of 1.2. The water and amino H atoms were located in difference Fourier maps and were refined, with distance restraints of $\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA; their displacement parameters could not be satisfactorily refined and were instead similarly tied.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Wenzhou Technology Project Foundation (grant No. S2004A004), the Zhejiang Provincial Technology Project Foundation (grant No. 2004C32088), Wenzhou Normal College and the University of Malaya for supporting this study.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2002). SADABS, SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, B.-X. \& Xu, D.-J. (2004a). Acta Cryst. C60, m39-m41.
Liu, B.-X. \& Xu, D.-J. (2004b). Acta Cryst. C60, m183-m185.
Sessler, J. L., Murai, T. \& Lynch, V. (1989). Inorg. Chem. 28, 1333-1341.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, X., Zhu, G.-S., Fang, Q.-R., Wu, G., Tian, G., Wang, R.-W., Zhang, D.-L., Xue, M. \& Qiu, S.-L. (2004). Eur. J. Inorg. Chem. pp. 185-191.
Tadjarodi, A., Taeb, A. \& Ng, S. W. (2001). Main Group Met. Chem. 24, 805806.

[^0]: (C) 2005 International Union of Crystallography

[^1]: Refinement on F^{2}
 $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
 $w R\left(F^{2}\right)=0.137$
 $S=1.13$
 4878 reflections
 322 parameters
 H atoms treated by a mixture of independent and constrained refinement

